The Pragmatic Programmer
Quick Reference Guide!

Andy Hunt Dave Thomas

Checklists from The Pragmatic Programmer, by Andrew Hunt and David Thomas. Visit
www.pragmaticprogrammer.com/ppbook.
Copyright (© 2000 by Addison Wesley Longman, Inc.

!Converted to HTML by Jeff Atwood (www.codinghorror.com)
Converted to BIgX by Matthew J. Miller (www.matthewjmiller.net)

www.pragmaticprogrammer.com/ppbook
http://www.pragmaticprogrammer.com/ppbook
www.codinghorror.com
http://www.codinghorror.com
www.matthewjmiller.net
http://www.matthewjmiller.net

Tips

1. Care About YOUr Craft.ouinininiiiiii et Xix
Why spend your life developing software unless you care about doing it well?

2. Think! About Your WOTKot e et Xix
Turn off the autopilot and take control. Constantly critique and appraise your work.

3. Provide Options, Don’t Make Lame EXCUSES.o.tutuuinint ettt eeaaneieenenennnn 3
Instead of excuses, provide options. Don’t say it can’t be done; explain what can be done.

4. Don’t Live with Broken WIindoWsottt 5
Fix bad designs, wrong decisions, and poor code when you see them.

5. Bea Catalyst for Changeo i e e 8

10.

11.

12.

13.

14.

15.

16.

You can’t force change on people. Instead, show them how the future might be and help them partici-
pate in creating it.

. Remember the Big PiCtUre et 8

Don’t get so engrossed in the details that you forget to check what’s happening around you.

Make Quality a Requirements ISSUEtutntntn ittt iaa e aeaeneenns 11
Involve your users in determining the project’s real quality requirements.

Invest Regularly in Your Knowledge Portfolio............ ..., 14
Make learning a habit.

Critically Analyze What You Read and Hear.............co.iuiiiiiiiinti it inieienene, 16
Don’t be swayed by vendors, media hype, or dogma. Analyze information in terms of you and your
project.

It’s Both What You Say and the Way You Say Itottt 21
There’s no point in having great ideas if you don’t communicate them effectively.

DRY-Don’t Repeat Yourself e 27
Every piece of knowledge must have a single, unambiguous, authoritative representation within a
system.

Make It EASy t0 REUSEttt ettt ettt e e ettt et e e e e e eaaas 33
If it’s easy to reuse, people will. Create an environment that supports reuse.

Eliminate Effects Between Unrelated Things.......... ...t 35
Design components that are self-contained. independent, and have a single, well-defined purpose.

There Are No Final DeCiSiONS.o.tutntn ittt e 46
No decision is cast in stone. Instead, consider each as being written in the sand at the beach, and plan
for change.

Use Tracer Bullets to Find the Target......... ..ottt i 49
Tracer bullets let you home in on your target by trying things and seeing how close they land.

Prototype tO Learmlttt e et e e e 54
Prototyping is a learning experience. Its value lies not in the code you produce, but in the lessons you
learn.

Checklists from The Pragmatic Programmer, by Andrew Hunt and David Thomas. Visit www.pragmaticprogrammer.com/ppbook.

Copyright (©) 2000 by Addison Wesley Longman, Inc.

www.pragmaticprogrammer.com/ppbook
http://www.pragmaticprogrammer.com/ppbook

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Program Close to the Problem Domaino.iuiiiiiiiii it 58
Design and code in your user’s language.

Estimate to AVOId SUIPIISESttt et e et 64
Estimate before you start. You’ll spot potential problems up front.

Iterate the Schedule with the Code......... ... i 69
Use experience you gain as you implement to refine the project time scales.

Keep Knowledge in Plain TeXt..........o.ouiiiininiin ittt enns 74
Plain text won’t become obsolete. It helps leverage your work and simplifies debugging and testing.
Use the Power of Command Shells........ i 80
Use the shell when graphical user interfaces don’t cut it.

Use a Single Editor Well. e e e et 82

The editor should be an extension of your hand; make sure your editor is configurable, extensible, and
programmable.

Always Use Source Code CONLIOL.ouiuuii et iaaaenn 88
Source code control is a time machine for your work—you can go back.
Fix the Problem, Not the Blamettt e 91

It doesn’t really matter whether the bug is your fault or someone else’s—it is still your problem, and it
still needs to be fixed.

Don’t Panic When Debugging e 91
Take a deep breath and THINK! about what could be causing the bug.
“select” ISt BIOKEI.ot e et e 96

It is rare to find a bug in the OS or the compiler, or even a third-party product or library. The bug is
most likely in the application.

Don’t Assume It—Prove Tt. e e 97
Prove your assumptions in the actual environment— with real data and boundary conditions.

Learn a Text Manipulation Language.ouuuiuiiittt ettt iiieiinanenen 100
You spend a large part of each day working with text. Why not have the computer do some of it for
you?

Write Code That Writes Codeottt e e 103
Code generators increase your productivity and help avoid duplication.

You Can’t Write Perfect SOftware. i e 107
Software can’t be perfect. Protect your code and users from the inevitable errors.

Design With CONMIIACES.ttt ettt e e e e e e e aaeaenes 111
Use contracts to document and verify that code does no more and no less than it claims to do.

Crash Barly e e e e 120

A dead program normally does a lot less damage than a crippled one.

Use Assertions to Prevent the Impossible......... i i 122
Assertions validate your assumptions. Use them to protect your code from an uncertain world.

Checklists from The Pragmatic Programmer, by Andrew Hunt and David Thomas. Visit www.pragmaticprogrammer.com/ppbook.

Copyright (©) 2000 by Addison Wesley Longman, Inc.

www.pragmaticprogrammer.com/ppbook
http://www.pragmaticprogrammer.com/ppbook

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Use Exceptions for Exceptional Problems.o, 127
Exceptions can suffer from all the readability and maintainability problems of classic spaghetti code.
Reserve exceptions for exceptional things.

Finish What You Startt e aeaes 129
Where possible, the routine or object that allocates a resource should be responsible for deallocating
it.

Minimize Coupling Between Modules. ittt 140
Avoid coupling by writing “shy” code and applying the Law of Demeter.

Configure, DOn’t INtEGIateo.tt ittt et e e eeenes 144
Implement technology choices for an application as configuration options, not through integration or
engineering.

Put Abstractions in Code, Detailsin Metadata...................ccoiiiiiiiiiiii i, 145
Program for the general case, and put the specifics outside the compiled code base.
Analyze Workflow to IMpProve CONCUITENCY tutnttt ettt ettt e e enaenenenenn. 151

Exploit concurrency in your user’s workflow.

Design USING SeIVICESottt et 154
Design in terms of services—independent, concurrent objects behind well-defined, consistent inter-
faces.

Always Design fOr CONCUITEICYttt ettt ettt ettt et e e e e e a e e eenaans 156
Allow for concurrency, and you’ll design cleaner interfaces with fewer assumptions.

Separate Views from Models.o e 161
Gain flexibility at low cost by designing your application in terms of models and views.
Use Blackboards to Coordinate Workflow........ it 169

Use blackboards to coordinate disparate facts and agents, while maintaining independence and isola-
tion among participants.

Don’t Program by Coincidence. it e 175
Rely only on reliable things. Beware of accidental complexity, and don’t confuse a happy coincidence
with a purposeful plan.

Estimate the Order of Your Algorithms i e 181
Get a feel for how long things are likely to take before you write code.
Test YOur EStimatesttt et 182

Mathematical analysis of algorithms doesn’t tell you everything. Try timing your code in its target
environment.

Refactor Early, Refactor Often.ttt e 186
Just as you might weed and rearrange a garden, rewrite, rework, and re-architect code when it needs
it. Fix the root of the problem.

DESIZN t0 TOSt . . .ottt ettt ettt e e e e 192
Start thinking about testing before you write a line of code.

Checklists from The Pragmatic Programmer, by Andrew Hunt and David Thomas. Visit www.pragmaticprogrammer.com/ppbook.

Copyright (©) 2000 by Addison Wesley Longman, Inc.

www.pragmaticprogrammer.com/ppbook
http://www.pragmaticprogrammer.com/ppbook

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Test Your Software, or Your Users Will i i i 197
Test ruthlessly. Don’t make your users find bugs for you.
Don’t Use Wizard Code You Don’t Understand.................ooiiiiiiiiiiiiiiiiiannann.. 199

Wizards can generate reams of code. Make sure you understand all of it before you incorporate it into
your project.

Don’t Gather Requirements-Dig for Them............ .. i 202
Requirements rarely lie on the surface. They’re buried deep beneath layers of assumptions, misconcep-
tions, and politics.

Work with a User to Think Like @ US€r...........o.iuiiiiiii i 204
It’s the best way to gain insight into how the system will really be used.
Abstractions Live Longer than Details i 209

Invest in the abstraction, not the implementation. Abstractions can survive the barrage of changes
from different implementations and new technologies.

USE @ ProjJect GLOSSATYttt ittt ettt ettt e e ettt e e e e e e eaees 210
Create and maintain a single source of all the specific terms and vocabulary for a project.

Don’t Think Outside the Box-Find the BoOX......... ...ttt aaaenes 213
When faced with an impossible problem, identify the real constraints. Ask yourself: “Does it have to
be done this way? Does it have to be done at all?”

Start When You're Ready.o.iuinitit ittt e et et et e ieaaaees 215
You've been building experience all your life. Don’t ignore niggling doubts.

Some Things Are Better Done than Described, 218
Don’t fall into the specification spiral—at some point you need to start coding.

Don’t Be a Slave to Formal Methods.ottt 220
Don’t blindly adopt any technique without putting it into the context of your development practices
and capabilities.

Costly Tools Don’t Produce Better DeSigns.ouiuiuieititni i aiaeneaeenen. 222
Beware of vendor hype, industry dogma, and the aura of the price tag. Judge tools on their merits.
Organize Teams Around Functionalityo 227

Don’t separate designers from coders, testers from data modelers. Build teams the way you build code.

Don’t Use Manual ProcedUures.uintintit ittt ie e ee ittt eat e nennaanannns 231
A shell script or batch file will execute the same instructions, in the same order, time after time.

Test Early. Test Often. Test Automatically............ i, 237
Tests that run with every build are much more effective than test plans that sit on a shelf.

Coding Ain’t Done ‘Til All the Tests RUNo.iuiiiiti i 238
‘Nuff said.

Use Saboteurs to Test YOUr TeSting.ouiuininininittin i iieniaeienenenns 244
Introduce bugs on purpose in a separate copy of the source to verify that testing will catch them.

Test State Coverage, Not Code COVETAZEuuutntn ittt 245

Identify and test significant program states. Just testing lines of code isn’t enough.

Checklists from The Pragmatic Programmer, by Andrew Hunt and David Thomas. Visit www.pragmaticprogrammer.com/ppbook.

Copyright (©) 2000 by Addison Wesley Longman, Inc.

www.pragmaticprogrammer.com/ppbook
http://www.pragmaticprogrammer.com/ppbook

66.

67.

68.

69.

70.

FINA BUEGS OMCEottt ittt ettt e e e e e e e e e et et e e 247
Once a human tester finds a bug, it should be the last time a human tester finds that bug. Automatic
tests should check for it from then on.

English is Just a Programming Languageotituininininitiiiiiiniiieanaenes 248
Write documents as you would write code: honor the DRY principle, use metadata, MVC, automatic
generation, and so on.

Build Documentation In, Don’t Bolt Tt On.ottt it i iieieaieanenns 248
Documentation created separately from code is less likely to be correct and up to date.

Gently Exceed Your Users’ EXpectationso.iuiuiuiiiinininii i ieinnnenenanes 255
Come to understand your users’ expectations, then deliver just that little bit more.

SigN YOUr WOTK. . ..o e e 258
Craftsmen of an earlier age were proud to sign their work. You should be, too.

Checklists from The Pragmatic Programmer, by Andrew Hunt and David Thomas. Visit www.pragmaticprogrammer.com/ppbook.

Copyright (©) 2000 by Addison Wesley Longman, Inc.

www.pragmaticprogrammer.com/ppbook
http://www.pragmaticprogrammer.com/ppbook

Checklists

0 Languages To Learnttt e ettt et eaeens page 17
Tired of C, C++, and Java? Try CLOS, Dylan, Eiffel, Objective C, Prolog, Smalltalk, or TOM. Each of
these languages has different capabilities and a different “flavor.” Try a small project at home using
one or more of them.

[0 The WISDOM ACIOSEIC . . . ettt ettt ettt et et ettt e e et e et et et et e e e eneneaens page 20
What do you want them to learn?
What is their interest in what you've got to say?
How sophisticated are they?
How much detail do they want?
Whom do you want to own the information?
How can you motivate them to listen to you?

O How to Maintain Orthogonality........... ...ttt page 34

e Design independent, well-defined components.
e Keep your code decoupled.
e Avoid global data.

e Refactor similar functions.
[0 Things tO PrOtOtYPeottt ettt ettt et e ettt e e ettt e e et et aeeenenenns page 53

e Architecture

e New functionality in an existing system
e Structure or contents of external data
e Third-party tools or components

e Performance issues

User interface design
[0 Architectural QUESHIONSttt ittt e et e e e e e e e iaeanans page 55

e Are responsibilities well defined?

e Are the collaborations well defined?

Is coupling minimized?

Can you identify potential duplication?

Are interface definitions and constraints acceptable?
e Can modules access needed data—when needed?

[0 Debugging Checklist ottt e et page 98

e Is the problem being reported a direct result of the underlying bug, or merely a symptom?
e Is the bug really in the compiler? Is it in the OS? Or is it in your code?
e If you explained this problem in detail to a coworker, what would you say?

e If the suspect code passes its unit tests, are the tests complete enough? What happens if you run
the unit test with this data?

Checklists from The Pragmatic Programmer, by Andrew Hunt and David Thomas. Visit www.pragmaticprogrammer.com/ppbook.
Copyright (©) 2000 by Addison Wesley Longman, Inc.

www.pragmaticprogrammer.com/ppbook
http://www.pragmaticprogrammer.com/ppbook

e Do the conditions that caused this bug exist anywhere else in the system?

O Law of Demeter for FUNCLIONSoui i page 141
An object’s method should call only methods belonging to:
o Itself
Any parameters passed in
Objects it creates
e Component objects

O How to Program Deliberately........... i page 172

e Stay aware of what you're doing.
e Don’t code blindfolded.

e Proceed from a plan.

e Rely only on reliable things.

e Document your assumptions.

e Test assumptions as well as code.
e Prioritize your effort.

e Don’t be a slave to history.

O When to Refactorttt et e page 185

You discover a violation of the DRY principle.
You find things that could be more orthogonal.
e Your knowledge improves.

The requirements evolve.

e You need to improve performance.

O Cutting the Gordian Knot.ottt et page 212
When solving impossible problems, ask yourself:

e Is there an easier way?

e Am I solving the right problem?
Why is this a problem?

e What makes it hard?

e Do I have to do it this way?

e Does it have to be done at all?
I 1T o o LT 7 page 237

e Unit testing
Integration testing

Validation and verification

Resource exhaustion, errors, and recovery
Performance testing

e Usability testing

Testing the tests themselves

Checklists from The Pragmatic Programmer, by Andrew Hunt and David Thomas. Visit www.pragmaticprogrammer.com/ppbook.
Copyright (©) 2000 by Addison Wesley Longman, Inc.

www.pragmaticprogrammer.com/ppbook
http://www.pragmaticprogrammer.com/ppbook

